ENTRA NEL NETWORK |
ENTRA NEL NETWORK |
(Adnkronos) - Una nuova impresa dell'intelligenza artificiale applicata alla medicina: può leggere una risonanza magnetica al cervello e restituire una diagnosi in pochi secondi. Lo ha dimostrato un team di scienziati dell'University of Michigan (Um) che ha sviluppato un modello basato sull'Ai rivelatosi in grado di intercettare patologie neurologiche con una precisione fino al 97,5%. Il sistema è riuscito anche a individuare quanto fosse urgente trattare un paziente. Nello studio pubblicato su 'Nature Biomedical Engineering' gli autori prospettano che questa tecnologia, definita unica nel suo genere, potrebbe avere un impatto trasformativo per il neuroimaging nei sistemi sanitari Usa. "Dato che la domanda globale di risonanza magnetica è in aumento e sottopone a notevole pressione i medici e la sanità, il nostro modello di intelligenza artificiale ha il potenziale per ridurre il carico migliorando la diagnosi e il trattamento con informazioni rapide e accurate", sottolinea l'autore senior Todd Hollon, neurochirurgo dell'ateneo statunitense, docente della UM Medical School. Hollon ha battezzato l'invenzione 'Prima'. Lui e il suo team hanno testato questa tecnologia su oltre 30mila studi di risonanza magnetica nel corso di un anno. In oltre 50 diagnosi radiologiche di gravi disturbi neurologici, Prima ha superato altri modelli di Ai all'avanguardia in termini di prestazioni diagnostiche. Il modello è riuscito a determinare quali casi avrebbero dovuto avere la priorità più alta. Alcune problematiche, ricordano gli esperti, come emorragie cerebrali o ictus, richiedono cure mediche immediate, e in questi casi Prima può allertare automaticamente i medici in modo che possano intervenire rapidamente, afferma Hollon. I ricercatori hanno ideato il modello in modo che possa consigliare quale specialista debba essere avvisato, ad esempio un neurologo specializzato in ictus o un neurochirurgo, con un feedback disponibile immediatamente dopo che il paziente ha completato l'imaging. "La precisione è fondamentale quando si legge una risonanza magnetica cerebrale, ma tempi di risposta rapidi sono essenziali per una diagnosi tempestiva e risultati migliori", evidenzia Yiwei Lyu, co-autore e ricercatore post-dottorato in Informatica e Ingegneria alla University of Michigan. "Nei passaggi chiave del processo, i risultati suggeriscono che Prima può migliorare i flussi di lavoro e semplificare l'assistenza clinica senza rinunciare alla precisione". Ma cos'è questo sistema messo a punto dai ricercatori? Il modello Prima è un 'vision language model' (Vlm), un sistema di intelligenza artificiale in grado di elaborare simultaneamente video, immagini e testo in tempo reale. Non è il primo tentativo di applicare l'Ai alla risonanza magnetica (Mri) e ad altre forme di neuroimaging, ma l'approccio è diverso: i modelli precedenti si basavano su sottoinsiemi di dati di Mri selezionati manualmente per raggiungere obiettivi specifici, come l'individuazione di lesioni o la previsione del rischio di demenza. Durante la progettazione del nuovo sistema, il team di Hollon ha basato l'addestramento su ogni risonanza magnetica (oltre 200mila studi e 5,6 milioni di sequenze) eseguita da quando è iniziata la digitalizzazione della radiologia all'University of Michigan Health decenni fa. I ricercatori inseriscono nel modello anche le storie cliniche dei pazienti e le motivazioni per cui i medici hanno ordinato uno studio di diagnostica per immagini. E, con tutti questi dati, "Prima funziona come un radiologo, integrando informazioni riguardanti il paziente e i dati di imaging per ottenere una comprensione completa del suo stato di salute", illustra il co-primo autore Samir Harake, data scientist nel Machine Learning in Neurosurgery Lab di Hollon. Questo, prosegue, "consente di ottenere prestazioni migliori in un'ampia gamma di attività di previsione". Ogni anno nel mondo vengono eseguiti milioni di studi di risonanza magnetica, una parte significativa dei quali è focalizzata sulle malattie neurologiche. Questa domanda, affermano i ricercatori, supera la disponibilità di servizi di neuroradiologia e comporta notevoli sfide, tra cui carenza di personale e rischio di errori diagnostici. A seconda del luogo in cui si esegue l'esame potrebbero volerci giorni o anche più tempo per ottenere un risultato. "Sia che si riceva una scansione in un sistema sanitario più ampio che deve far fronte a un volume crescente di prestazioni sia che si faccia in un ospedale rurale con risorse limitate, sono necessarie tecnologie innovative per migliorare l'accesso ai servizi di radiologia - ragiona Vikas Gulani, coautore e presidente del Dipartimento di Radiologia alla UM Health - I nostri team hanno collaborato per sviluppare una soluzione all'avanguardia a questo problema, con un potenziale enorme e scalabile". Nonostante i buoni risultati ottenuti da Prima, puntualizzano però gli autori, la ricerca è ancora nella fase iniziale di valutazione. Il lavoro futuro del team esplorerà la possibilità di integrare informazioni più dettagliate sui pazienti con i dati delle cartelle cliniche elettroniche per una diagnosi più accurata. Ciò che Hollon descrive come "ChatGpt per l'imaging medico" ha un potenziale più ampio, prevedono gli esperti, e un giorno potrebbe essere adattato ad altre modalità di imaging, come mammografie, radiografie del torace ed ecografie. "Così come gli strumenti di intelligenza artificiale possono aiutare a scrivere una bozza di e-mail o a fornire raccomandazioni, Prima si propone di essere un copilota per l'interpretazione degli studi di imaging medico", conclude Hollon, sottolineando il potenziale che integrare questi sistemi avrebbe riguardo all'obiettivo di "migliorare l'assistenza sanitaria attraverso l'innovazione".
(Adnkronos) - eDreams Odigeo (di seguito 'la società' o in breve 'eDO'), la piattaforma di abbonamenti di viaggio leader nel mondo, ha diffuso oggi i nuovi dati sulla soddisfazione dei clienti relativi al servizio Prime in Italia. I dati indicano che il sentiment degli iscritti ha raggiunto un nuovo massimo storico, con un net promoter score (nps) medio di 61 per la categoria 'accommodation' durante l'ultimo trimestre. Sulla scala nps standard di settore, che va da -100 a +100, un punteggio di questa portata è classificato come eccellente. Questo record segna l'ultimo traguardo di un trend di crescita costante durato cinque anni. Le analisi condotte dal 2021 a oggi confermano che l’effetto abbonamento si sta progressivamente rafforzando, offrendo un valore costantemente superiore rispetto all'esperienza di viaggio standard. Mentre i tassi di soddisfazione risultano aumentati per tutti i clienti, riflettendo i miglioramenti generali della piattaforma, il sentiment dei membri Prime ha subito un'accelerazione molto più rapida. Oggi, in Italia, i membri Prime valutano la propria esperienza il 36% in più rispetto agli utenti standard non abbonati. Il divario di soddisfazione tra i due gruppi è aumentato negli ultimi cinque anni, a dimostrazione del fatto che le caratteristiche esclusive del programma Prime stanno creando un livello di esperienza premium ben distinto. Questi risultati seguono i significativi investimenti nella proposta di valore di Prime, tra cui l'introduzione di opzioni di flessibilità (come la possibilità di cancellare le prenotazioni per qualsiasi motivo) e un'offerta di prodotti ampliata con offerte riservate ai soci su voli, hotel, pacchetti, noleggio auto e treni. Le performance attuali supportano la tabella di marcia strategica della società, che punta a raggiungere 13 milioni di abbonati entro il 2030 (rispetto agli oltre 7,7 milioni di oggi), confermando che il servizio sta diventando sempre più attraente per i consumatori alla ricerca di una soluzione di viaggio flessibile e orientato al valore. Dana Dunne, ceo di eDreams Odigeo ha dichiarato: "Il raggiungimento di questo picco storico nella soddisfazione degli abbonati è una pietra miliare significativa che convalida la nostra visione: offrire ai nostri membri un'esperienza premium basata sull'intelligenza artificiale. Quando abbiamo lanciato Prime, abbiamo aperto la strada a una categoria completamente nuova, quella dei viaggi in abbonamento, che prima semplicemente non esisteva". "Questi punteggi record - ha spiegato - confermano che, man mano che facciamo crescere la nostra piattaforma aggiungendo prodotti e perfezionando il servizio giorno dopo giorno, il valore che offriamo diventa sempre più evidente per i nostri membri. Il crescente divario tra abbonati e utenti standard dimostra che il modello su abbonamento offre fondamentalmente un'esperienza superiore. Ci impegniamo a continuare a guidare la categoria degli abbonamenti di viaggio in Italia e non solo, con una piattaforma che migliora ogni singolo giorno, assicurando che i nostri iscritti abbiano sempre il miglior partner possibile per i loro viaggi".
(Adnkronos) - "L’Italia è tra i paesi leader in alcune filiere, può guidare la nuova industrializzazione europea e rivendicare le proprie eccellenze". Lo dice Stefano Ciafani, presidente nazionale Legambiente, durante la presentazione dei risultati della terza edizione del progetto 'L’Italia in cantiere. Un Clean Industrial Deal Made in Italy' a Roma. “Abbiamo un problema su alcune filiere industriali storicamente deindustrializzate, come chimica e siderurgia, la cui crisi parte dagli anni ’90 e non è colpa del Green Deal europeo”, ha aggiunto Ciafani, sottolineando l’urgenza di azioni concrete. “Vogliamo fare in modo che il Clean Industrial Deal europeo possa vedere l’Italia protagonista, contribuendo alla nuova reindustrializzazione del Vecchio Continente”. Legambiente ha così presentato il Libro bianco con 30 proposte, frutto di un percorso di confronto con le imprese più innovative iniziato nel luglio 2025, “per orientare le politiche industriali verso sostenibilità, innovazione e occupazione green. Speriamo che le politiche industriali possano partire anche dalle nostre 30 proposte”.